论文部分内容阅读
Alumina ceramics with different sintering temperatures in argon atmosphere were obtained using stereolithography-based 3D printing. The effects of sintering temperature on microstructure and physical and mechanical properties were investigated. The results show that the average particle size, shrinkage, bulk density, crystallite size, flexural strength, Vickers hardness, and nanoindentation hardness increased with the increase in sintering temperature, whereas the open porosity decreased with increasing sintering temperature. No change was observed in phase composition, chemical bond, atomic ratio, and surface roughness. For the sintered samples, the shrinkage inZ direction is much greater than that inX orYdirection. The optimum sintering temperature in argon atmosphere is 1350℃ with a shrinkage of 3.0%, 3.2%, and 5.5% inX,Y, andZ directions, respectively, flexural strength of 26.7 MPa, Vickers hardness of 198.5 HV, nanoindentation hardness of 33.1 GPa, bulk density of 2.5 g/cm3, and open porosity of 33.8%. The optimum sintering temperature was 70℃ higher than that sintering in air atmosphere when achieved the similar properties.