【摘 要】
:
2018年11月16日,广东东莞,工人们在东莞凤岗美驰图公司的生产先上正在组装1:8的"嫦娥四号"登月车模型。据了解,美驰图和中国航天的渊源始于2013年。当年6月,"嫦娥三号"发射前,国防科工局探月与航天工程中心就在全国范围寻找"玉兔号"月球车模型的生产企业。
论文部分内容阅读
2018年11月16日,广东东莞,工人们在东莞凤岗美驰图公司的生产先上正在组装1:8的"嫦娥四号"登月车模型。据了解,美驰图和中国航天的渊源始于2013年。当年6月,"嫦娥三号"发射前,国防科工局探月与航天工程中心就在全国范围寻找"玉兔号"月球车模型的生产企业。
其他文献
传统电表签封管理方式会为电力企业计量部门带来较重的工作负担,容易影响企业信息化、自动化与智能化发展进程。本文提出了RFID技术在电表智能签封管理系统中的应用,重点分析了RFID电子智能签封管理系统在电力系统中自动识别抄表系统中的改造应用过程,并结合RFID电子智能签封抄表管理系统对比传统抄表系统实验操作探讨二者的现实差异,证明新技术在电表智能签封管理系统中应用的优越性。
边缘检测算法广泛应用于图像分割、模式识别和缺陷检测等领域。针对传统检测算法中存在的边缘不连续、噪声多、多边缘等问题,引入图像梯度锚点对传统的边缘检测算法进行优化,提高边缘检测的精度和效率。首先通过图像高斯滤波抑制噪声干扰;进而计算图像像素点的局部梯度极大值,提取图像锚点;最后采用智能连接算法将锚点连接实现产品图像边缘的获取。实验结果表明,生成的图像边缘具有连续性好、信噪比高和定位准确等优点,而且对
针对环视鱼眼图像中目标几何畸变大导致建模难的问题,提出一种基于可变形卷积网络的实例分割方法,主要是在Mask R-CNN框架的基础上引入可变形卷积和可变形RoI Pooling(候选区域池化)来提升网络对几何畸变的建模能力.针对深度神经网络训练数据缺乏、易过拟合的问题,提出了基于多任务学习的训练方法.首先将现有的大规模普通图像数据集转换为鱼眼数据集来弥补训练数据不足的问题,然后采用多任务学习的训练
设计了一种新型的中继循环残差神经网络,用于增强超分辨率重建图像的重建效果,提出了一种双层深度网络,其中重建网络负责初步图像重建,由中继网络进一步提示图像细节.所提出的中继网络架构同样也适用于具有不同类型的超分辨率深度学习网络,在CAS-PEAL-R1和CASIA-Webface数据库上的实验结果表明:中继网络模型提升了传统深度网络的图像重建性能,主客观重建质量均优于现有的卷积神经网络超分辨率算法.
随着人们对于公共安全的要求越来越重视,视频监控设备的安装已经变得非常普遍,行人再识别作为针对监控视频中行人进行分析的技术也受到更多人的关注。基于现有的深度学习网络提出了一种以最小化三元组损失为训练目标的非监督行人再识别算法。该设计主要通过预训练模型对数据进行特征提取,然后通过k-means聚类,最后对聚类后的数据进行三元组配对进行网络训练优化。通过在相关数据集上的测试结果可以看出,该设计在处理非标
随着数据量爆炸性的增长与机器性能的不断提高,基于卷积神经网络的目标检测技术愈发火热。YOLO(You Only Look Once)是基于回归的卷积神经网络的目标检测方法,其被得到广泛使用。对于个人使用YOLO网络训练模型而言,若想达到目标检测的目的,就必须拥有大量有效的数据,因此数据的采集与预处理也就变得尤为重要。首先介绍卷积神经网络的构造与原理,再延伸至YOLO网络的特点分析,以课题组项目中扫
This paper provides a strategic solution for enhancing the cybersecurity of power distribution system operations when information and operation technologies converge in active distribution network(ADN
为提升班组建设质量,充分做好各项检修工作,太原第二热电厂热工工程部辅控二班以二维码,微信及百度云为平台,将二维码主要应用在班组建设方面,实际应用结果表明,借助二维码技术不仅有助于更便捷,更高效的做好各项检修工作,而且能节约大量的人力,物力成本,取得了较好的应用效果,此项技术值得推广与应用。
本文介绍了什么是NB-IoT以及基于基于蜂窝网络的窄带物联网在智能燃气表行业的应用前景,NB-IoT具有广复盖、低功耗、低成本、大连接等显著优点,受到各行各业越来越多的应用,智能燃气表行业同诸多行业一样,也有着广阔的应用前景。
介绍了美俄近几年在高超声速巡航导弹、高超声速助推滑翔飞行器以及高超声速飞机等领域的发展状况。在此基础上,分析了高超声速飞行器发展过程中遇到的高温热环境和吸气式动力系统面临的难题。