论文部分内容阅读
Through the introduction of the overlapping factors between the light (pump and signal) intensities and the erbium doping distributions inside the fiber core, analytical solutions of homogeneously broadened two-level systems for erbium-doped fiber amplifiers pumped in the 980 nm absorption band have been derived from EDFA rate equations and light propagation equations in steady-state case. By using these deduced expressions and numerical simulated methods, important features characterizing the amplifiers such as gain, pump threshold power, optimum fiber length have been analyzed and discussed.
Through the introduction of the overlapping factors between the light (pump and signal) intensities and the erbium doping distributions inside the fiber core, analytical solutions of homogeneously broadened two-level systems for erbium-doped fiber amplifiers pumped in 980 nm absorption band have been derived from EDFA rate equations and light propagation equations in steady-state cases. By using these deduced expressions and numerical simulated methods, important features characterizing the amplifiers such as gain, pump threshold power, optimum fiber length have been analyzed and discussed.