论文部分内容阅读
针对传统视觉词袋模型对图像尺度变化较为敏感的缺点,提出一种基于改进视觉词袋模型的图像标注方法。该方法引入图像的多尺度空间信息,对图像进行多尺度变换并构建多尺度视觉词汇表,将图像表示为不同尺度特征,结合多核学习的方法优化各尺度特征的相应权重,获取特征表示。实验结果验证了该方法的有效性,其标注准确率比传统BoVW模型提高17.8%~25.7%。