Enhanced capacity to CO2 sorption in humid conditions with a K-doped biocarbon

来源 :能源化学 | 被引量 : 0次 | 上传用户:youzheng123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Solid sorbents with enhanced capacity and selectivity towards CO2 are crucial in the design of an efficient capture process.Among the possible alternatives,K2CO3-doped activated carbons have shown high CO2 capture capacity and rapid carbonation reaction rate.In this work,a sustainable and low-cost approach is developed with a biomass-based activated carbon or biocarbon as support.The CO2 capture performance in cyclic sorption-desorption operation and the sorption kinetics have been investigated under different scenarios in a purpose-built fixed-bed set-up.Independent of the H2O concentration in the flue gas,a constant relative humidity (~20%) in the K2CO3-doped biocarbon bed promoted the carbonation reaction and boosted the CO2 sorption capacity (1.92 mmol/g at 50℃ and 14 kPa partial pressure of CO2).Carbonation is slower than physical adsorption of CO2 but wise process design could tune the operation conditions and balance capture capacity and sorption kinetics.
其他文献
Hydrogen production from formic acid decomposition (FAD) is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challenging topic.The surface chemical and el
The development of high-performance electrocatalysts holds the decisive key to the electrochemical CO2 reduction toward value-added products.Formic acid or formate is a desirable reduction product,but its selective production is often challenging.Tin base
An OH--slow-release strategy was established to controllably tune the (α-and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride.Ammonium chloride is added to the ionic solution to regulate the pH of the solution and slow down
It is of significance to design of stable and cost-effective electrocatalyst for water splitting with high efficiency in an alkaline medium. The major obstacles for practical application of water splitting devices are lack of high-efficiency and low-cost
Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction (ORR) is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only show good ORR activity in alkaline med
With the increasing demand for large-scale battery systems in electric vehicles (EVs) and smart renewable energy grids,organic materials including small molecules and polymers utilized as electrodes in rechargeable batteries have received increasing attra
The uniformly dispersed transition metal (Co,Ni and Fe) nanoparticles supported on the surface of La-promoted MgO were prepared via a deposition-precipitation method for hydrogen production from catalytic decomposition of ammonia.X-ray diffraction,N2 adso
In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2∶2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to
Cubic phase Li7La3Zr2O12 (LLZO),a member of the Li-Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often c
Asphaltenes,complex aromatic compounds from various carbonaceous sources,could be obtained by solvent dissolution,filtration and adsorption.It was difficult to clarify the molecular structures and chemical properties of asphaltene due to its structural si