论文部分内容阅读
Characteristics of developing scour-holes at a sand-embedded 0.2 m diameter circular cylinder are presented. Non-intrusive, high-resolution topographic measurements of developing scour-holes were made with an experimental installation using a laser distance sensor (LDS) and precision step-motors. A clear-water experiment was conducted with bed shear stress equal to 95% of the critical bed shear stress for the initiation of sediment motion at the undisturbed plane sand bed with a d50 of 0.26 mm. During the running experiment of 21 hours duration, measurements were taken by the LDS in different azimuthal half-planes with θ = 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165 and 180o in order to study the spatio-temporal variation of geometric properties in developing scour-holes. After 21 hours, the equilibrium condition was approached, with a scour rate less than d50 per hour. Measurement of maximum scour depth in different azimuthal half-planes at different points in time during the experiment show that scour started at the cylinder side and surrounded the cylinder after about 20% of experiment time. Slopes of developing scour-holes presented three regions with different inclinations, which were attributed to vortex action. Both maximum scour depth and maximum scour radius at different azimuthal half-planes are well correlated with the maximum scour depth at plane with θ = 0o. When providing maximum scour depth at the cylinder front, the presented correlations are useful for simple calculation of scour-hole topography. This work provides an experimental database for advanced numerical simulation for loose sediment hydraulics.
Non-intrusive, high-resolution topographic measurements of developing scour-holes were made with an experimental installation using a laser distance sensor (LDS) and precision step -motors. A clear-water experiment was conducted with bed shear stress equal to 95% of the critical bed shear stress for the initiation of sediment motion at the undisturbed plane sand bed with a d50 of 0.26 mm. During the running experiment of 21 hours duration, measurements were taken by the LDS in different azimuthal half-planes with θ = 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165 and 180 o in order to study the spatio-temporal variation of geometric properties in developing scour-holes. After 21 hours, the equilibrium condition was approached, with a scour rate less than d50 per hour. Measurement of maximum scour depth in different azimuthal half-planes at different points in time during the experiment show that scour started at the cylinder side and surrounded the cylinder after about 20% of experiment time. Slopes of developing scour-holes presented three regions with different inclinations, which were attributed to vortex action. Both maximum scour depth and maximum scour radius at different azimuthal half-planes are well correlated with the maximum scour depth at plane with θ = 0o. When providing maximum scour depth at the cylinder front, the presented correlations are useful for simple calculation of scour-hole topography. This work provides an experimental database for advanced numerical simulation for loose sediment hydraulics.