【摘 要】
:
大功率液力机械器是重型特种车辆传动系统的关键核心部件,为满足整车高速、重载和高任务可靠性的使用要求,一方面需要提升液力机械变速器自身的强度和可靠性,另一方面要建立和完善大功率液力机械变速器的状态监测和故障诊断系统;基于专家系统和典型零部件的失效物理模型,针对液力机械变速箱系统和关键零部件的常见失效形式,建立了大功率液力机械变速器状态监测和故障诊断系统,分为变矩与闭锁功能监测及报警模块、换挡提示及报警模块、油位监测及报警模块、系统油压监测及报警模块和油温监测及报警模块共五大部分;通过实车测试证明,大功率液力
【机 构】
:
北京航天发射技术研究所,北京100076;某驻泰安地区军代室,山东泰安271000;北京市青年宫,北京 100035
论文部分内容阅读
大功率液力机械器是重型特种车辆传动系统的关键核心部件,为满足整车高速、重载和高任务可靠性的使用要求,一方面需要提升液力机械变速器自身的强度和可靠性,另一方面要建立和完善大功率液力机械变速器的状态监测和故障诊断系统;基于专家系统和典型零部件的失效物理模型,针对液力机械变速箱系统和关键零部件的常见失效形式,建立了大功率液力机械变速器状态监测和故障诊断系统,分为变矩与闭锁功能监测及报警模块、换挡提示及报警模块、油位监测及报警模块、系统油压监测及报警模块和油温监测及报警模块共五大部分;通过实车测试证明,大功率液力机械变速器状态监测和故障诊断系统能够较为有效的识别系统的潜在失效和使用风险,或在出现严重故障前,通过简单的维护和保养,避免严重故障的发生,从而减少人力和零备件的需求,降低保障费用.
其他文献
网络化博弈是一种研究社会网络、生物网络、信息网络及交易网络的重要方式.针对网络化博弈建模方法在网络拓扑结构、博弈模型、建模方式上存在的问题,提出一种基于Agent网络化博弈建模方式.以南京地区汽车品牌价格竞争现象为应用场景,将汽车品牌看作Agent个体,并基于现实网络复杂结构特征,引入“强竞争”和“弱竞争”概念,基于演化博弈理论考察有限理性下汽车品牌价格的竞争行为.实验结果表明,基于Agent网络化博弈模型的范数平均相对误差为2.11%,低于传统模型的4.64%和3.57%,模型精度更高,其中违约惩罚力度
在分布式的网络环境中,多个企业机构之间有在某种共识下的共享资源.为预防未经授权的用户访问这些资源,将改进的基于权重的秘密共享签名方案用于联盟链中的共识过程,提出基于区块技术的权重标识的跨域认证模型.模型中不同CA机构作为联盟链中共识机制的验证节点,系统基于验证节点的权重采用改进的秘密共享方案生成拥有不同权重的私钥分配给相应的验证节点.在该方案基础上,共识阶段验证节点结合PBFT机制特点对区块中消息进行签名生成权重标识并发送给用户.分析表明,与目前方案相比,该方案在降低用户终端计算量和通信量的同时有较高的安
单一算法生成的识别器普适性不足,对不同种群安卓软件进行识别产生的效果不稳定.针对这种情况,提出一种基于模型库的安卓恶意软件检测方法.通过Python程序进行爬虫与权限提取工作,得到应用的权限信息;使用SMO按照应用的权限信息分类得到不同种群的数据;将应用的种群信息输入到模型库中,得到恶意检测结果,并根据结果对模型库进行演化,使模型库的检测能力不断增强.实验结果表明,对于相同数据集,演化后的模型库方法比一般算法准确率都有小幅提高;对于多种群数据集,模型库方法相比一般算法准确率提高约10百分点,说明模型库方法
针对云计算中图像数据的安全问题,提出一种基于自然对数序列的似混沌序列图像加密方案.提出自然对数序列的概念,验证其似混沌特性;使用二维猫映射对图像进行像素置乱,并在此基础上利用SM3杂凑算法和自然对数序列进行像素值扰乱,得到加密图像;在离散对数的假设下,证明方案具有IND-CCA安全.仿真实验表明,该方案在安全性上与混沌序列具有相似的特性,加密图像具有更大的密钥空间和抵御穷举攻击的能力;在效率方面具有加解密速度快、实时性强等特点,适合云环境下图像数据的隐私保护.
城市轨道交通的精准短时客流预测可以很好地缓解城市交通拥堵,给城市居民带来更快速、更优质的出行服务.通常短时客流预测的客流量数据规律性较弱、随机误差干扰较强,ARIMA(Autoregressive Integrated Moving Average)模型能对因变量产生的推迟量、产生随机误差的滞后值及当前值进行预测.为验证模型预测效果,以成都轨道交通天府广场站为例,设计一种基于改进ARIMA模型的城市轨道交通短时客流预测研究办法.通过实例分析,验证了改进ARIMA模型在城市轨道交通系统进行车站短时客流预测的
对于独立光伏系统,当外界温度变化或光伏面板遭受遮挡时造成系统工作不稳定,系统在短时间内无法快速精确地对外输出最大功率.针对此问题,提出一种基于参数估计的双积分滑模变结构最大功率跟踪算法并设计独立光伏系统仿真模型.在仿真过程中,利用粒子群优化算法(Particle Swarm Optimization,PSO)估计太阳能板模型参数,解决了常用算法在最大功率跟踪过程中耗时较长、抖动较大的问题.仿真结果表明,该算法提高了功率跟踪的响应速度、跟踪精度,减少功率变化曲线的震荡和功率损耗.
传统的图正则化方法使用欧氏距离度量样本空间的相似度,并不能准确考察复杂数据集的邻域信息,容易导致模型在复杂形状数据和非凸数据集中的泛化性能下降.提出一种改进的图正则算法,使用等距特征映射保留样本空间的邻域信息,帮助模型进行流形学习,同时结合使用KL约束进一步使得数据表示的外部结构变得光滑,从而捕获到更稀疏和高级的特征表示.在MNIST和YaleB等数据集上的实验结果表明,相比于流行的几种特征提取算法,该算法能够提取到更有意义和稳健的特征.在分类任务和聚类任务上具有优势,同时具有更好的抗干扰性能.
在复杂的网络环境中Web数据库面临诸多威胁和挑战.在传统数据库防护技术的基础上,提出一种基于动态异构冗余体系的拟态数据库应用.针对动态异构冗余的拟态数据库模型进行攻击抵御能力实证评估.重点针对拟态数据库的表决器部分进行评估和实验,从不利用软件漏洞的基础出发,使用应用软件的字符处理特性机制来完成攻击实验.论证得出在满足“共谋攻击”的条件下或者在掌握了一定数量的异构体应用漏洞信息的情况下,针对异构体的语义识别差异构造信息输出,可以实现敏感信息从表决器的多模裁决中逃逸,削弱系统设计的理论安全性.
针对传统负载均衡算法不能满足公网数字集群系统高并发用户请求和快速呼叫建立等需求,提出一种基于负载反馈的分布式数字集群动态负载均衡算法,实现公网数字集群系统负载均衡,提高用户容量.首先建立参与MCPTT服务器的静态负载和动态负载监控机制和指标;然后利用加权轮询算法为用户分配参与MCPTT服务器,并通过用户请求的处理获得复合负载参数;根据负载指标的反馈更新参与MCPTT服务器权值以动态调整服务器负载.仿真结果表明,该算法的负载均衡效果优于传统算法和其他动态反馈算法,负载均衡度更小、用户请求响应延迟更低.
随着深度学习方法的不断发展,跨模态哈希检索技术也取得了长足的进步.但是,目前的跨模态哈希检索方法通常基于两种假设:a)相似文本描述的图像内容也相似;b)相同类别的图像有着较好的全局相似性.但是,真实数据集中的数据往往不能满足以上两种假设,导致了跨模态哈希检索模型性能的降低.针对以上两个问题,提出了一种基于文本引导对抗哈希的跨模态检索方法(text-guided adversarial hashing for cross-modal re-trieval,TAH),此方法在构建的网络结构基础上,将文本哈希码