论文部分内容阅读
针对基于对象的图像检索问题,利用K均值(K-means)聚类,提出了一种新的基于多示例学习(MIL)框架的图像检索算法KP-MIL。该算法在正包和负包组成示例集合聚类,获取潜在正示例代表和包结构特性数据,然后利用径向基核分别度量两者的相似性,最后利用alpha因子均衡两者相似性对核函数结果的影响。在标准对象图像检索集SIGVAL上进行实验,实验结果表明,该方法是有效的且性能优于其他同类方法。