论文部分内容阅读
针对难以通过数学建模方法分析数控机床运动精度演化规律的问题,提出了基于混沌相空间重构理论的数控机床运动精度非线性演化预测方法。采用平均互信息法计算延迟时间,以虚假最近邻点法计算最小嵌入维数,对数控机床运动精度的一维时间序列进行相空间重构,获得与原系统拓扑同构的状态空间。基于混沌系统内在的规律性和有序性,用相点轨迹描述运动精度在相空间中的演化规律,以相点的多维分量构成输入向量,以运动精度预测值为输出向量,构造了基于RBF神经网络的非线性预测模型。引入了量子粒子群方法对预测模型参数进行优化,得到RBF预测网络