论文部分内容阅读
针对传统关联规则挖掘算法不利于用户选择关键数据进行分析、无法处理多值属性数据及效率低下等问题,提出了基于KAF因子和CHF因子的Apriori改进算法来进行多值属性关联规则挖掘,运用概念格理论对多值属性数据进行了重新定义和分类;建立了数据挖掘参数调整机制,以提高算法挖掘效率,方便用户选择关键属性值进行规则挖掘分析.结合某省全员人口数据对算法进行了具体实现和分析.实验结果表明,算法性能具有较大提高.