论文部分内容阅读
应用具有量子行为的粒子群优化算法,对支持向量(SVM)进行参数优化研究.根据支持向量机的分类准确率和泛化能力之间的关系,应用QPSO算法选取比较优秀的参数模型,比较参数模型的各项性能,选取最适合实际需要的参数模型.仿真表明,QPSO算法的SVM模型与PSO算法相比在分类准确率和泛化能力上均获得更好的效果,经QPSO优化后的SVM整体性能明显提高.