论文部分内容阅读
基于SOFM神经网络构建的矩形网格模型可以实现密集散乱点数据自组织压缩,生成期望疏密程度和精度的双有序点列,但该模型存在边缘误差。为减小矩形网格的边缘误差,改进了矩形网格模型的训练模式,提出了3步训练模式。第1步采用整个测量点集,对矩形网格模型中的所有神经元进行整体训练;第2步采用测量点集中的边界点集,对矩形网格模型中的网格边界神经元进行训练;第3步采用边界点集中的角点点集,对矩形网格模型中的网格边界角点神经元进行训练。算例表明,应用该训练模式,可以有效减小矩形网格的边缘误差,矩形网格逼近散乱数据点