论文部分内容阅读
为了有效的去除图像中的噪声,保护图像细节,在研究了非采样下Contourlet(NSCT)变换和贝叶斯阈值的基础上,综合考虑NSCT变换后系数尺度间和尺度内的相关性,提出了一种新算法。该算法结合NSCT系数的相关性和贝叶斯风险最小准则估计区域自适应贝叶斯阈值,再利用硬阈值函数去噪,最后通过最小均方误差准则进行比例萎缩,得到真实系数估计。对于被高斯白噪声污染的图像,实验将该算法与经典算法相比较,结果表明在绝大多数情况下,该算法在峰值信噪比和视觉效果上都优于经典算法。