论文部分内容阅读
视频监控中,拥挤人群的相互遮挡给人体分割和跟踪带来很大困难.为了解决该问题,提出人体模型和人体边缘曲线相结合的人体分割方法.针对分割可能造成人体特征值存在较大的缺损、畸变问题,采用具有较高鲁棒性的BP(Back Propaga-tion)神经网络作为跟踪模型.为了提高BP网络的自主学习能力,采用分层Dirichlet过程来判断是否有新类别的人体特征数据产生,进而为BP网络的学习提供决策.通过仿真实验证实:本文提出的遮挡处理方法能够有效解决人体部分遮挡问题,与其他方法相比,具有简单且实时性好的优点;此