论文部分内容阅读
摘要:GPS定位技术的出现和不断发展完善,使测绘定位技术发生了革命性的变革,为工程测量提供了崭新的技术手段和方法。本文介绍了GPS系统在测量领域的应用特点。
关键词:GPS定位系统 测量 应用
工程测量是各项建筑工程设计、施工及设备安装的必要工序。随着我国建筑交通事业的发展,工程测量也获得了长足的进步,长期以来用测角、测距、测水准为主体的常规地面定位技术,正在逐步被以一次性确定3维坐标的、高速度、高效率、高精度的GPS技术所代替,同时定位范围已从陆地和近海扩展到海洋和宇宙空间;定位方法已从静态扩展到动态;定位服务领域已从导航和测绘领域扩展到国民经济建设的广阔领域。
1、GPS系统的组成
GPS全球定位系统由空间卫星群和地面监控系统两大部分组成,除此之外,测量用户当然还应有卫星接收设备。
1.1空间卫星群
GPS的空间卫星群由24颗高约20万公里的GPS卫星群组成,并均匀分布在6个轨道面上,各平面之间交角为60°,轨道和地球赤道的倾角为55°,卫星的轨道运行周期为11小时58分,这样可以保证在任何时间和任何地点地平线以上可以接收4到11颗GPS卫星发送出的信号。
1.2GPS的地面控制系统
GPS的地面控制系统包括一个主控站、三个注入站和五个监测站,主控站的作用是根据各监控站对GPS的观测数据计算卫星的星历和卫星钟的改正参数等并将这些数据通过注入站注入到卫星中去;同时还对卫星进行控制,向卫星发布指令,调度备用卫星等。监控站的作用是接收卫星信号,监测卫星工作状态。
1.3GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机、气象仪器等组成,其作用是接收GPS卫星发出的信号,利用信号进行导航定位等。随着现代的科学技术的发展,体积小、重量轻便于携带的GPS定位装置和高精度的技术指标为工程测量带来了极大的方便。
2、GPS的工作原理
GPS系统是一种采用距离交会法的卫星导航定位系统。GPS的工作原理,简单地说来,是利用我们熟知的几何与物理上一些基本原理。首先我们假定卫星的位置为已知,而我们又能准确测定我们所在地点A至卫星之间的距离,那么A点一定是位于以卫星为中心、所测得距离为半径的圆球上。
3、GPS测量的技术特点
相对于常规的测量方法来讲,GPS测量有以下特点:
3.1测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。
3.2定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12×10-6,而在100~500公里的基线上可达10-6~10-7。
3.3观测时间短。观测时间短采用GPS布设控制网时每个测站上的观测时间一般在30~40min左右,采用快速静态定位方法,观测时间更短。例如使用Timble4800GPS接收机的RTK法可在5s以内求得测点坐标。
3.4提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。
3.5操作简便。GPS测量的自动化程度很高。目前GPS接收机已趋小型化和操作傻瓜化,观测人员只需将天线对中、整平,量取天线高打开电源即可进行自动观测,利用数据处理软件对数据进行处理即求得测点三维坐标。而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。
3.6全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。
4、GPS定位技术在工程测量中的应用
4.1GPS测量在公路测量中的应用
公路路线一般处在一条带状走廊内。其平面控制测量往往采用导线形式,这包括附合导线、闭合导线、结点导线等导线网形式。对于重要构造物如大桥、特大桥、长大隧道等,也有布设成三角网、线形锁等形式。
4.2GPSRTK用于公路路线中桩实时放样
RTK是指载波相位实时动态差分定位(Real-TimeKinematic),它是GPS发展的最新形式。静态GPS测量采用相位差分可以达到厘米甚至毫米级精度,但缺点是经过事后处理才知道结果。而RTK通过实时处理即能达到厘米级精度。
RTK要求一台基准站和至少一台流动站及相配套的数据通讯链。基准站实时地把测站信息和所有观测值通过数据链传递给流动站,流动站用先进的处理技术来瞬时求出流动站的三维坐标。RTK具有下述优点:
(1)直接以厘米级精度实时测定中桩位置;(2)工作人员少;(3)砍伐工作量少。
但是RTKK技术无法克服上空有遮挡的影响,在这种地区,RTK不能使用。同时RTK对通讯电源、电台亦有严格要求,对于山体阻挡,如何考虑数据通讯显得尤为重要。
4.3GPS测量用于高程控制测量
高程测量中通常应用的高程系统主要有大地高程系统、正常高系统和正高系统。大地高程系统是以椭球面为基准的高程系统。正高系统是以大地水准面为基准的高程系统。由于正高实际上是无法严格确定的,为实用上的方便,通常采用根据前苏联大地测量学者莫洛金斯基的理论建立的正常高系统。
计算正常高的精度,主要取决于大地高差和高程异常的精度,而其中高程异常差的精度与其计算方法及其所利用的资料密切相关。
GPS测量资料与水准测量资料相结合,来确定区域性大地水准面的高程是一种有效的方法。这种方法要求GPS观测点具有水准测量资料且密度适当,分布比较均匀。利用高精度GPS定位技术精密确定观测点的大地高程差,并根据建立的适当大地水准面数学模型,内插出计算点的高程异常或异常差,从而得出特定点的正常高。
5、GPS测量的应用体会:
5.1GPS作业有着极高的精度。它的作业不受距离限制,非常适合于国家大地点破坏严重地区、地形条件困难地区、局部重点工程地区等。
5.2GPS测量可以大大提高工作及成果质量。它不受人为因素的影响。整个作业过程全由微电子技术、计算机技术控制,自动记录、自动数据预处理、自动平差计算。
5.3GPSRTK技术将彻底改变公路测量模式。RTK能实时地得出所在位置的空间三维坐标。这种技术非常适合路线、桥、隧勘察。它可以直接进行实地实时放样、中桩测量、点位测量等。
5.4GPS测量可以极大地降低劳动作业强度,减少野外砍伐工作量,提高作业效率。一般GPS测量作业效率为常规测量方法的3倍以上。
5.5GPS高精度高程测量同高精度的平面测量一样,是GPS测量应用的重要领域。特别是在当前高等级公路逐渐向山岭重丘区发展的形势下,往往由于这些地区地形条件的限制,实施常规的几何水准测量有困难,GPS高程测量无凝是一种有效的手段。
我国GPS定位技术的应用已深入各个领域,国家大地网、城市控制网、工程控制网的建立与改造已普遍地应用GPS技术,随着DGPS差分定位技术和RTK实时差分定位系统的发展和美国AS技术的解除,单点定位精度不断提高,GPS技术在导航、运载工具实时监控、石油物探点定位、地质勘查剖面测量、碎部点的测绘与放样等领域将有广泛的应用前景。
参考文献:
[1] 李雷,GPS定位技术在工程测量中的应用[J].2004.
[2] 张正禄.工程测量学的发展现状和趋势[J].科技大学学报.2003.
关键词:GPS定位系统 测量 应用
工程测量是各项建筑工程设计、施工及设备安装的必要工序。随着我国建筑交通事业的发展,工程测量也获得了长足的进步,长期以来用测角、测距、测水准为主体的常规地面定位技术,正在逐步被以一次性确定3维坐标的、高速度、高效率、高精度的GPS技术所代替,同时定位范围已从陆地和近海扩展到海洋和宇宙空间;定位方法已从静态扩展到动态;定位服务领域已从导航和测绘领域扩展到国民经济建设的广阔领域。
1、GPS系统的组成
GPS全球定位系统由空间卫星群和地面监控系统两大部分组成,除此之外,测量用户当然还应有卫星接收设备。
1.1空间卫星群
GPS的空间卫星群由24颗高约20万公里的GPS卫星群组成,并均匀分布在6个轨道面上,各平面之间交角为60°,轨道和地球赤道的倾角为55°,卫星的轨道运行周期为11小时58分,这样可以保证在任何时间和任何地点地平线以上可以接收4到11颗GPS卫星发送出的信号。
1.2GPS的地面控制系统
GPS的地面控制系统包括一个主控站、三个注入站和五个监测站,主控站的作用是根据各监控站对GPS的观测数据计算卫星的星历和卫星钟的改正参数等并将这些数据通过注入站注入到卫星中去;同时还对卫星进行控制,向卫星发布指令,调度备用卫星等。监控站的作用是接收卫星信号,监测卫星工作状态。
1.3GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机、气象仪器等组成,其作用是接收GPS卫星发出的信号,利用信号进行导航定位等。随着现代的科学技术的发展,体积小、重量轻便于携带的GPS定位装置和高精度的技术指标为工程测量带来了极大的方便。
2、GPS的工作原理
GPS系统是一种采用距离交会法的卫星导航定位系统。GPS的工作原理,简单地说来,是利用我们熟知的几何与物理上一些基本原理。首先我们假定卫星的位置为已知,而我们又能准确测定我们所在地点A至卫星之间的距离,那么A点一定是位于以卫星为中心、所测得距离为半径的圆球上。
3、GPS测量的技术特点
相对于常规的测量方法来讲,GPS测量有以下特点:
3.1测站之间无需通视。测站间相互通视一直是测量学的难题。GPS这一特点,使得选点更加灵活方便。但测站上空必须开阔,以使接收GPS卫星信号不受干扰。
3.2定位精度高。一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随着距离的增长,GPS测量优越性愈加突出。大量实验证明,在小于50公里的基线上,其相对定位精度可达12×10-6,而在100~500公里的基线上可达10-6~10-7。
3.3观测时间短。观测时间短采用GPS布设控制网时每个测站上的观测时间一般在30~40min左右,采用快速静态定位方法,观测时间更短。例如使用Timble4800GPS接收机的RTK法可在5s以内求得测点坐标。
3.4提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程。
3.5操作简便。GPS测量的自动化程度很高。目前GPS接收机已趋小型化和操作傻瓜化,观测人员只需将天线对中、整平,量取天线高打开电源即可进行自动观测,利用数据处理软件对数据进行处理即求得测点三维坐标。而其它观测工作如卫星的捕获,跟踪观测等均由仪器自动完成。
3.6全天候作业。GPS观测可在任何地点,任何时间连续地进行,一般不受天气状况的影响。
4、GPS定位技术在工程测量中的应用
4.1GPS测量在公路测量中的应用
公路路线一般处在一条带状走廊内。其平面控制测量往往采用导线形式,这包括附合导线、闭合导线、结点导线等导线网形式。对于重要构造物如大桥、特大桥、长大隧道等,也有布设成三角网、线形锁等形式。
4.2GPSRTK用于公路路线中桩实时放样
RTK是指载波相位实时动态差分定位(Real-TimeKinematic),它是GPS发展的最新形式。静态GPS测量采用相位差分可以达到厘米甚至毫米级精度,但缺点是经过事后处理才知道结果。而RTK通过实时处理即能达到厘米级精度。
RTK要求一台基准站和至少一台流动站及相配套的数据通讯链。基准站实时地把测站信息和所有观测值通过数据链传递给流动站,流动站用先进的处理技术来瞬时求出流动站的三维坐标。RTK具有下述优点:
(1)直接以厘米级精度实时测定中桩位置;(2)工作人员少;(3)砍伐工作量少。
但是RTKK技术无法克服上空有遮挡的影响,在这种地区,RTK不能使用。同时RTK对通讯电源、电台亦有严格要求,对于山体阻挡,如何考虑数据通讯显得尤为重要。
4.3GPS测量用于高程控制测量
高程测量中通常应用的高程系统主要有大地高程系统、正常高系统和正高系统。大地高程系统是以椭球面为基准的高程系统。正高系统是以大地水准面为基准的高程系统。由于正高实际上是无法严格确定的,为实用上的方便,通常采用根据前苏联大地测量学者莫洛金斯基的理论建立的正常高系统。
计算正常高的精度,主要取决于大地高差和高程异常的精度,而其中高程异常差的精度与其计算方法及其所利用的资料密切相关。
GPS测量资料与水准测量资料相结合,来确定区域性大地水准面的高程是一种有效的方法。这种方法要求GPS观测点具有水准测量资料且密度适当,分布比较均匀。利用高精度GPS定位技术精密确定观测点的大地高程差,并根据建立的适当大地水准面数学模型,内插出计算点的高程异常或异常差,从而得出特定点的正常高。
5、GPS测量的应用体会:
5.1GPS作业有着极高的精度。它的作业不受距离限制,非常适合于国家大地点破坏严重地区、地形条件困难地区、局部重点工程地区等。
5.2GPS测量可以大大提高工作及成果质量。它不受人为因素的影响。整个作业过程全由微电子技术、计算机技术控制,自动记录、自动数据预处理、自动平差计算。
5.3GPSRTK技术将彻底改变公路测量模式。RTK能实时地得出所在位置的空间三维坐标。这种技术非常适合路线、桥、隧勘察。它可以直接进行实地实时放样、中桩测量、点位测量等。
5.4GPS测量可以极大地降低劳动作业强度,减少野外砍伐工作量,提高作业效率。一般GPS测量作业效率为常规测量方法的3倍以上。
5.5GPS高精度高程测量同高精度的平面测量一样,是GPS测量应用的重要领域。特别是在当前高等级公路逐渐向山岭重丘区发展的形势下,往往由于这些地区地形条件的限制,实施常规的几何水准测量有困难,GPS高程测量无凝是一种有效的手段。
我国GPS定位技术的应用已深入各个领域,国家大地网、城市控制网、工程控制网的建立与改造已普遍地应用GPS技术,随着DGPS差分定位技术和RTK实时差分定位系统的发展和美国AS技术的解除,单点定位精度不断提高,GPS技术在导航、运载工具实时监控、石油物探点定位、地质勘查剖面测量、碎部点的测绘与放样等领域将有广泛的应用前景。
参考文献:
[1] 李雷,GPS定位技术在工程测量中的应用[J].2004.
[2] 张正禄.工程测量学的发展现状和趋势[J].科技大学学报.2003.