论文部分内容阅读
为了正确诊断和识别矿井通风机故障,选取矿井通风机振动信号中的7个频率段能量指标作为故障识别的样本变量。在此基础上,采用主成分分析(PCA)与朴素贝叶斯(NBC)判别分析相结合的方法建立通风机故障判别模型。以采集到的15个样本数据为学习样本,10个为预测样本,对该模型进行检验和应用,并与传统NBC判别分析模型和其它模型的结果进行比较。测试结果表明利用PCA与NBC故障判别模型能够有效地消除样本变量指标间的相互影响,使故障判别结果更加准确。