论文部分内容阅读
频繁模式挖掘是数据挖掘研究中的关键问题之一,在关联规则等领域应用广泛.概念格是数据分析和知识表示的一种有效工具.适用于从数据库中挖掘规则的问题描述.分析了概念格在频繁模式挖掘的应用,包括对普通事务项集、序列项集及格、树和图等复杂结构的挖掘;讨论了概念格构造优化的必要性及两类主要的优化方法属性约简和剪枝概念格;并对关联规则提取的方法的优劣进行了基本比较,最后探讨了概念格未来的研究方向.