论文部分内容阅读
针对工程中复杂可展曲面难以用单一可展曲面来表示的问题,提出了一种带多形状参数的CE-Bézier可展曲面的光滑拼接技术.在对CE-Bézier可展曲面性质分析的基础上,将3D欧几里德空间中的CE-Bézier可展曲面解释为4D齐次空间中的CE-Bézier参数曲线,并利用参数曲线的连续性推导了CE-Bézier可展曲面间G1光滑拼接、Farin-BehmG2连续拼接以及G2Beta约束拼接的充要条件.最后给出了CE-Bézier可展曲面间光滑拼接的基本步骤和几何造型实例.研究结果表明:所提方法简单、直观、易实现,有效地增强了CE-Bézier可展曲面表达复杂可展曲面的能力.
Aiming at the problem that the complex developable surface in engineering can not be represented by a single developable surface, a smooth splicing technique of CE-Bézier developable surface with multi-shape parameters is presented. Based on the analysis of the CE-Bézier developable surface properties , The CE-Bézier developable surface in 3D Euclidean space is interpreted as the CE-Bézier parameter curve in 4D homogeneous space, and the continuity of the parameter curve is used to derive the smooth connection of G1 between the developable surfaces of CE-Bézier , The Farin-BehmG2 continuous splicing and the G2Beta constrained splicing.Finally, the basic steps and geometric modeling examples of the CE-Bézier developable splicing surfaces are given.The results show that the proposed method is simple, intuitive and easy to implement, It effectively enhances the ability of CE-Bézier developable surfaces to express complex developable surfaces.