论文部分内容阅读
为构建东盟十国知识图谱,需要对相关文本进行命名实体识别工作。设计一种基于双向GRU-CRF的神经网络模型,对中国驻东盟十国大使馆中文新闻数据进行命名实体识别。以预训练的领域词向量为输入,利用双向GRU网络从向量化的文本中提取语义特征;再通过CRF层预测并输出最优标签序列。为了进一步改善结果,在双向GRU和CRF层之间添加两层隐藏层。在数据预处理方面,提出一种数据集划分算法,对文本进行更加科学合理的划分。在东盟十国数据集上,将该模型与几种混合模型进行对比,结果显示所提模型在人名、地名、组织机构名识别任务中拥