论文部分内容阅读
为解决协同过滤推荐算法中的数据量过大和数据稀疏性的问题,提出了基于客户因子分析的协同推荐算法。该算法利用因子分析将客户向量进行降维处理,得到几个具有代表性的客户因子,然后用这些客户因子对目标客户进行回归分析,进而预测目标客户对待评项目的评分值。最后通过实验证明了该算法的有效性,为以后研究推荐算法提供了一种新的途径。