论文部分内容阅读
采用二元多项式模型对时变OFDM系统的时频响应进行建模.在多项式模型的基础上,结合期望最大化(EM)方法的思想,提出了一种利用时频面上的二维数据来获取模型参数的最大似然(ML)估计值的算法(PEMTO).为了降低计算复杂度,避免由于矩阵求逆而带来的风险,给出了PEMTO的一种迭代计算方法(RPEMTO).PEMTO算法在数学上进行简化后,可以用来进行一维序贯信道估计.仿真结果显示,所提出算法的误码率低于其他类型的盲估计算法.
The time-frequency response of the time-varying OFDM system is modeled using a bivariate polynomial model.Based on the polynomial model and combined with the idea of expectation maximization (EM), a method is proposed to use the two-dimensional data (PEMTO) for obtaining the maximum likelihood (ML) estimation of the model parameters.In order to reduce the computational complexity and avoid the risk of matrix inversion, an iterative calculation method (RPEMTO) for PEMTO is given.PEMTO The algorithm is mathematically simplified and can be used to perform one-dimensional sequential channel estimation.The simulation results show that the proposed algorithm has a lower bit error rate than other types of blind estimation algorithms.