论文部分内容阅读
为解决人体动作识别中的复杂背景和自遮挡问题,对深度图像进行研究,从深度图像中获取20个人体骨架关节点,在此基础上将动作时间序列的关节角度变化作为人体运动的特征模型。通过改进的动态时间规整算法计算不同动作之间关节角度变化序列的相似性,进行动作识别,以缓解传统DTW算法病态校准的问题。将识别方法在采集的动作数据库和MSR Action3D数据进行验证,实验结果表明,该方法能达到90%以上的识别率。