论文部分内容阅读
针对传统图像超分辨率重建算法存在网络训练困难与生成图像存在伪影的问题,提出一种利用生成式对抗网络的超分辨率重建算法。去除生成式对抗网络的批量归一化层降低计算复杂度,将其中的残差块替换为密集残差块构成生成网络,使用VGG19网络作为判别网络的基础框架,以全局平均池化代替全连接层防止过拟合,引入纹理损失函数、感知损失函数、对抗损失函数和内容损失函数构成生成器的总目标函数,利用纹理损失增强局部信息匹配度,采用激活层前的特征信息计算感知损失获取更多细节特征,使用WGAN-GP理论优化网络模型的对抗损失加速收