Single-metal-atom site with high-spin state embedded in defective BN nanosheet promotes electrocatal

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:lcsj652
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Single-atom catalysts (SACs) especially supported on two-dimensional nitrogen-doped carbon substrate have been widely reported to be able to effectively promote electrocatalytic N2 reduction reaction (eNRR).The precise design of single-metal-atom active site(SMAS) calls for fundamental understanding of its working mechanism for enhanced eNRR performance.Herein,by means of density functional theory calculations,we theoretically investigate the eNRR performance of nine prototypical SMAS,namely,MN2B2 (M:transition metals of IVB,VB and VIB groups) which comprises of asymmetric ligands of N2B2 embedded in defective BN nanosheet.Our results reveal the significant role of spin state of SMAS in tuning the potential-determining steps of eNRR,in which MN2B2 site with higher spin magnetic moment (μ) is beneficial to reducing limiting potentials (UL) of eNRR.Specially,CrN2B2(μ =4μB),VN2B2 (μ =3μB) and MoN2B2 (μ =2μB) demonstrate high activity and selectivity to eNRR.The asymmetric ligands of N2B2 are deemed to be superior over mono-symmetric ligands.More importantly,our results demonstrate that breaking (or deviating) of the scaling relations between key N-containing intermediates (*N2H/*N2 and *NH2/*N2) on MN2B2 can be realized by enhancing spin state of SMAS which renders the active site a balanced N-affinity critical for efficient eNRR.This observation is validated by the calculated Sabatier volcano-shape relation between eNRR limiting potentials and N2 adsorption energy.Our study develops the guidance for catalyst design to boost eNRR performance by tuning the spin state of an active site.
其他文献
Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core-shell β-NaYF4:Yb,Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6
A series of bimetallic nickel cobalt sulfides with hierarchical micro/nano architectures were fabricated via a facile synthesis strategy of bimetallic micro/nano structure precursor construction-anion exchange via solvothermal method.Among the nickel coba
Two-dimensional (2D) lead halide perovskites nanostructures have drawn great fundamental interest and displayed excellent properties for various optoelectronic applications.However,the toxicity of lead remains a concern for their large-scale utilizations.
Hybrid organolead halide perovskites have attracted tremendous attention due to their recent success as high efficiency solar cell materials and their fascinating material properties uniquely suitable for optoelectronic devices.However,the poor ambient an
Miniaturized mobile electronic devices have aroused great attention due to their convenience to daily life.However,they still face a problem that power supply from the conventional cell needs to be regularly charged or replaced.Portable electricity supply
The influence of H2O and O2 on the performances of Mg-doped zinc oxide (ZnMgO) and ZnMgO-based inverted quantum-dot light-emitting diodes (QLEDs) are studied.With the involvement of H2O from ambience,ZnMgO exhibits a high conductivity,whereas the resultan
Phase transition is common during (de)-intercalating layered sodium oxides,which directly affects the structural stability and electrochemical performance.However,the artificial control of phase transition to achieve advanced sodium-ion batteries is lacki
The mechanical force between cells and the extracellular microenvironment is crucial to many physiological processes such as cancer metastasis and stem cell differentiation.Mitosis plays an essential role in all these processes and thus an in-depth unders
Electrochemical reduction of nitrogen to ammonia under mild conditions provides an intriguing approach for energy conversion.A grand challenge for electrochemical nitrogen reduction reaction (NRR) is to design a superior electrocatalyst to obtain high per
Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4\'-(N-(4-butylphenyl))](TFB),one of the most popular and widely used hole-transport layer(HTL) materials,has been successfully applied in high performance spin-coated quantum dots-based light-emitting diodes(Q