论文部分内容阅读
针对传统的人脸识别算法受面部遮挡的影响导致很难兼顾鲁棒性和保持原始图像核心信息的问题,本文提出了一种基于统计学习优化尺度不变特征变换的面部遮挡人脸识别算法。首先,利用SIFT将所有给定训练图像用一组局部特征描述符表示出来;然后,通过执行统计学习获得正常脸部图像SIFT特征的概率分布函数,利用获得的概率分布函数在新观察到的测试图像中检测异常SIFT特征;最后,计算测试图像与训练图像之间的相似度,并利用K近邻分类器完成人脸识别。在AR人脸数据库上的实验验证了本文算法的有效性及可靠性,实验结果表明,相比其