论文部分内容阅读
针对部署在云环境下的云应用资源配置优化问题,提出了通过感知服务质量变化自适应配置云应用资源的策略。设计了一种基于采集到的历史运行指标数据生成贝叶斯网络概率推理模型,并利用预定义应用服务质量目标(Service Level Objectives,SLO)找到资源超配或不足的虚拟设备,生成资源优化方案。在仿真环境下验证测试结果显示,开启自适应配置算法的云应用请求响应时间指标明显优于未开启的云应用。