【摘 要】
:
Heterostructure has triggered a surge of interest due to its synergistic effects between two different layers,which contributes to desirable physical properties for extensive potential applications.Structurally stable borophene is becoming a promising can
【机 构】
:
The State Key Laboratory of Mechanics and Control of Mechanical Structures and Laboratory of Intelli
论文部分内容阅读
Heterostructure has triggered a surge of interest due to its synergistic effects between two different layers,which contributes to desirable physical properties for extensive potential applications.Structurally stable borophene is becoming a promising candidate for constructing two-dimensional (2D) heterostructures,but it is rarely prepared by suitable synthesis conditions experimentally.Here,we demonstrate that a novel heterostructure composed of hydrogenated borophene and graphene can be prepared by heating the mixture of sodium borohydride and few-layered graphene followed by stepwise and in situ thermal decomposition of sodium borohydride under high-purity hydrogen as the carrier gas.The fabricated borophene-graphene heterostructure humidity sensor shows ultrahigh sensitivity,fast response,and long-time stability.The sensitivity of the fabricated borophene-based sensor is near 700 times higher than that of pristine graphene one at the relative humidity of 85% RH.The sensitivity of the sensor is highest among all the reported chemiresistive sensors based on 2D materials.Besides,the performance of the borophene-graphene flexible sensor maintains good stability after bending,which shows that the borophene-based heterostructures can be applied in wearable electronics.The observed high performance can be ascribed to the well-established charge transfer mechanism upon H2O molecule adsorption.This study further promotes the fundamental studies of interfacial effects and interactions between boron-based 2D heterostructures and chemical species.
其他文献
In this study,the size of the titanium organic cage was controlled to achieve the restricted growth from a single Ag(Ⅰ) atom(Ag@Ti5) to rare all-carboxylate-protected superatomic Ag cluster (Ag6@Ti6).The classical octahedral Ag64+ cluster with two delocal
Large-scale renewable energy must overcome conversion and storage challenges before it can replace fossil fuels due to its intermittent nature.However,current sustainable energy devices still suffer from high cost,low efficiency,and poor service life prob
The construction of advanced electrode materials is key to the field of energy storage.Herein,a free-standing anatase titania(TiO2) nanocrystal/carbon nanotube (CNT) film is reported using a simple and scalable sol-gel method,followed by calcination.This
A high-quality hybrid Cs0.15FA0.85Pbl3thin film is deposited through doping of carbon nanodots (CNDs) into perovskite precursor solution.The corresponding inverted planar perovskite solar cells (PSCs) of ITO/PTAA/Cs0.15FA0.85PbI3/PC61BM/BCP/Ag exhibit an
Self-passivation in aqueous solution and sluggish surface reaction kinetics significantly limit the photoelectrochemical (PEC)performances of silicon-based photoelectrodes.Herein,a WO3 thin layer is deposited on the p-Si substrate by pulsed laser depositi
Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs).Conventional strain engineering techniques (e.g.,mechanical bending,heating) cannot conserve strain due to
Twisted van der Waals homo-and hetero-structures have aroused great attentions due to their unique physical properties,providing a new platform to explore the novel two-dimensional (2D) condensed matter physics.The robust dependence of phonon vibrations a
Fabrication of large-area and uniform semiconducting thin films of two-dimensional (2D) materials is paramount for the full exploitation of their atomic thicknesses and smooth surfaces in integrated circuits.In addition to elaborate vapor-based synthesis
Heavy-metal-free silver based Ⅰ-Ⅲ-Ⅵ semiconductor nanocrystals (NCs),including ternary silver indium sulfide (AglnS2) and derivative quaternary silver indium zinc sulfide (i.e.,AgInZn2S4) NCs,possess advantages of low toxicity,and size-tunable band gaps a