论文部分内容阅读
本文应用遗传算法模式理论,采用灰度编码,给出模式交叉、模式变异操作的定义,并提出一种新的改进遗传算法。该算法使交叉、变异操作有机结合,避免了交叉概率和变异概率的主观选择,具有收敛速度快,迭代次数少且不易陷入局部最优等优点。最后使用该方法对33自由度的汽车悬架多体模型进行实例分析并和传统优化方法、标准遗传算法和小生境遗传算法进行比较,结果明显优于其它方法。