论文部分内容阅读
提出了一种基于改进BP神经网络的火电厂实时数据预测模型,即在标准BP算法中引入动量因子和自适应学习速率,以减少收敛振荡过程,加快学习速度.选用某电厂300 MW机组主给水流量实时数据进行网络训练学习和校核,分析了输入和隐含层节点数、学习样本数和动量因子对模型预测精度的影响.实例分析表明,该模型有较好容错性,能满足火电机组性能分析的要求.