论文部分内容阅读
Borodin和Raspaud提出一个猜想:任何既没有5-圈也没有相邻三角形的平面图是3-可着色.这个猜想强化了Steinberg提出的猜想.在本文中,我们研究了没有5-,6-,9-圈并且没有相邻三角形的平面图的结构.利用这个结构,证明了这类图是3-可着色的.它加强了由Borodin及Sanders和Zhao的结果,并且又是对Borodin和Raspaud猜想的一个正面的支持.