论文部分内容阅读
A Nortek acoustic Doppler current profiler (NDP) was installed on a moving vessel to survey the entrance to the Jinhae Bay on August 22~23, 2001. The current velocity and acoustic backscattering signal were collected along two cross-sections; water samples were also collected during the measurement. The acoustic signals were normalized to compensate for the loss incurred by acoustic beam spreading in the seawater. The in situ calibration shows that a significant relationship is present between suspended sediment concentrations (SSC) and normalized acoustic signals. Two acoustic parameters have been determined to construct an acoustic-concentration model. Using this derived model, the SSC patterns along the surveyed cross-sections were obtained by the conversion of acoustic data. Using the current velocity and SSC data, the flux of suspended sediment was estimated. It indicates that the sediment transport into the bay through the entrance has an order of magnitude of 100 t per tidal cycle.
A Nortek acoustic Doppler current profiler (NDP) was installed on a moving vessel to survey the entrance to the Jinhae Bay on August 22-23, 2001. The current velocity and acoustic backscattering signal were collected along two cross-sections; water samples were also The in situ calibration shows that a significant relationship is present between suspended sediment concentrations (SSC) and normalized acoustic signals. Two acoustic parameters Using this derived model, the SSC patterns along the surveyed cross-sections were obtained by the conversion of acoustic data. Using the current velocity and SSC data, the flux of suspended sediment was estimated. It indicates that the sediment transport into the bay through the entrance has an order of magnitude of 100 t per tidal cyc le.