论文部分内容阅读
卷积神经网络(CNN)作为一种深度学习架构,在精确提取图像特征的同时降低模型复杂度。针对CNN在图像识别方面的优势,提出一种基于CNN的人脸表情特征提取方法。使用具有8层网络结构的Alex Net模型对融合的人脸表情图像进行特征提取,再使用支持向量机(SVM)进行分类预测。将预测结果与一些经典方法如SVM、PCA等做比较,可以发现在样本图片拍摄条件变化较大的情况下,CNN在提取图像本质特征方面有其他方法不可比拟的效果。