荒野环境中的移动机器人定位方法研究

来源 :计算机与数字工程 | 被引量 : 0次 | 上传用户:star33333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对荒野环境中的特征稀少,传统的通过提取点云特征点进行匹配的点云配准方法无法准确地进行定位的问题,提出了一种先建立离线点云地图,再利用离线地图进行定位的定位方法.建图过程使用GPS、IMU、激光点云信息,利用GPS信息优化正态分布变换配准算法的配准过程,建立高精度的离线点云地图;定位过程先加载离线地图,使用激光点云、IMU信息,结合正态分布变换配准算法与无迹卡尔曼滤波算法得到位姿估计,并对得到的位姿估计添加地图修正量,得到最终的位姿估计.
其他文献
电力负荷具有复杂性、分散性以及时变性等特点,变电站负荷特性分类能够为典型变电站的负荷建模提供依据.其中大数据分析及聚类分析方法在电力负荷特性分析中发挥了重要作用.论文对比了各类聚类分析方法,针对k-means算法对于孤立数据(离群点)敏感等缺点,考虑到变电站负荷数据的分散性,提出一种改进型k-means算法.该算法首先剔除离群点,再找出最佳聚类中心数目并进行分类.实验结果表明,该算法可以使变电站负荷特性的聚类效果进一步提高,提高电力负荷分析与建模的精准度.
在所有的问题场景中运行所有可能的解决方案时,没有哪一种解决方案的性能始终优于其他选项.这个事实促使人们使用定制的方法,即可以根据特定的问题输入自动预测可行的算法.在主流的预测方法几乎都依赖人工设计特征的情况下,近些年来深度学习开始被用于问题实例特征的自动化提取.算法预测数据集的特殊性导致最终输入训练模型的样本与标签存在诸多变数,从而影响深度模型在该数据集上的学习能力.因此,论文是在原始方法的基础上通过改进数据样本和算法标签的生成提升了在某些数据集上基于深度模型的算法预测任务性能.
随着ETC通道车辆违规行为的不断增加,针对该场景下不同尺度和类型的车辆检测已经成为城市交通管理的一项重要工作.论文基于高速公路ETC场景下的真实数据集,提出了一种车辆检测的优化方法.为提高算法在车辆检测方面的适用性和准确性,论文在YOLOv3算法的基础上采用GIOU作为YOLOv3的边界框回归损失函数,同时用调整过的锚框来代替原始算法的锚框,使生成的检测框可以更好地适应不同角度的车辆.改进的YOLOv3在ETC场景数据集下的检测精度达到90.2%mAP,检测精度相对于目前主流的车辆检测算法SSD提升了10