论文部分内容阅读
针对现有神经模糊网络应用中的不足,提出了一种新的基于变精度粗糙集的神经模糊网络优化方法,并讨论了其在复杂系统建模中的应用。将变精度粗糙集理论中的β分类精度作为信息函数,选择条件属性。通过选择适当的精度,对建模数据进行离散化,组成决策表。通过对决策表进行变精度的知识约简,提取重要的属性和属性值,映射到模糊规则中,简化生成的规则,从而有效地优化了神经模糊网络结构,极大地减少了网络的训练时间,且提高了训练精度。将该方法应用于有大量样本数据的非线性时延系统建模,仿真实例验证了此种方法的可行性和有效性。