一种高效的最大频繁项集挖掘算法DFMFI—Miner

来源 :计算机仿真 | 被引量 : 4次 | 上传用户:hu_20092009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
分析最大频繁项集和完全频繁项集的关系,提出了一个挖掘最大频繁项集的高效算法DFMFI M iner(The M iner Basedon D epth-F irst Search ing forM in ingMaximal Frequent Item sets),采用深度优先方法搜索项集空间,采用垂直位图及一定的压缩方法对表示事务数据库并进行约简,并采用多种有效剪枝策略和优化策略,提高了算法的效率。在多个数据集上进行了实验,实验结果表明该算法特别适于挖掘具有长频繁项集的数据集。
其他文献
针对高分辨率遥感图像舰船目标识别问题,提出了一种基于支持向量机的舰船目标分类方法。支持向量机(SVM)是一类新型机器学习方法,基于结构风险最小化归纳原则,具有出色的学习能力。与传统的方法相比,支持向量机不但结构简单,而且技术性能特别是泛化能力明显提高。该文简要介绍了有关统计学习理论和支持向量机算法,将支持向量机应用于遥感图像舰船目标识别,并同传统的舰船识别方法进行了相关的对比实验,实验结果说明本文
该文提出了一种基于小波和奇异值分解的人脸识别方法。首先对人脸图象进行小波分解,由于小波变换具有良好的多尺度特征表达能力,能将图象的大部分能量集中到低频子图中,使图象得到有效压缩。然后,对得到的每幅低频子图进行基于奇异值分解的特征提取,并将奇异值特征向量进行压缩,把压缩后的特征向量作为每幅人脸图象的特征,进而求出每一类人脸图象的特征向量中心。最后,将每一类的特征向量中心输入到分类器中进行识别。最终得
随着我国经济的迅猛发展,电力行业的发展速度不断加快,竞争压力不断增大,在此情况下,电力生产、交易以及消费发生巨大的变化,系统运行条件严格苛刻,安全问题不断发生。因此,
正交频分复用(OFDM)技术能够有效地克服频率选择性衰落,因此目前在宽带无线通信中被广泛地应用。该文首先介绍了正交频分复用技术的基本原理,分别对其发射机和接收机的具体结构进