论文部分内容阅读
分析最大频繁项集和完全频繁项集的关系,提出了一个挖掘最大频繁项集的高效算法DFMFI M iner(The M iner Basedon D epth-F irst Search ing forM in ingMaximal Frequent Item sets),采用深度优先方法搜索项集空间,采用垂直位图及一定的压缩方法对表示事务数据库并进行约简,并采用多种有效剪枝策略和优化策略,提高了算法的效率。在多个数据集上进行了实验,实验结果表明该算法特别适于挖掘具有长频繁项集的数据集。