论文部分内容阅读
针对无刷直流电机(BLDCM)负载运行时稳态跟踪误差大、电机性能受负载不确定性影响的缺点,提出了一种基于改进广义预测控制(GPC)算法的BLDCM调速方法.基于dSPACE公司汽车仿真模型(ASM)中的BLDCM模型设计了BLDCM的控制系统并进行仿真研究.仿真结果显示:当电机从静止跟踪到设定200r/min转速时,稳态精度达到0.5r/min;当电机受到幅值为1N·m的正弦波变化的负载扰动时,转速最大波动为1.5r/min,与传统比例—积分—微分(proportion-integral-derivative,PID)控制与滑模控制算法相比,所设计控制器使转速波动减小超过3.3%.因此,改进GPC算法控制器能够有效抑制负载扰动,提高系统转速跟踪精度.
Aiming at the shortcomings that the steady-state tracking error of brushless DC motor (BLDCM) is large and the performance of the motor is affected by the load uncertainty, a method based on improved generalized predictive control (GPC) is proposed.Based on dSPACE BLDCM model in automotive simulation model (ASM) BLDCM control system is designed and simulated. The simulation results show that the steady state accuracy reaches 0.5r / min when the motor runs from standstill to 200r / min. When the motor Compared with traditional PID control and sliding mode control algorithm, the maximum speed fluctuation is 1.5 r / min when subjected to a load disturbance with a sine wave amplitude of 1 N · m. The controller is designed to reduce the speed fluctuation by more than 3.3%, therefore, the improved GPC algorithm controller can effectively suppress the load disturbance and improve the system speed tracking accuracy.