论文部分内容阅读
本文讨论如下一般三阶常微分方程周期边值问题Lu(t)=f(t,u(t),u′(t),u″(t)),t∈[0,ω],u(k)(0)=u(k)(ω),k=0,1,2解的存在性,其中Lu(t)=u(t)+a 2u″(t)+a 1u′(t)+a 0u(t)是三阶常微分算子,f:[0,w]×R 3→R连续.在非线性项f满足适当的增长条件下,本文应用Fourier分析法与Leray-Schauder不动点定理获得了该问题解的存在唯一性.