中熟超高产大豆品种的花荚形成及时空分布

来源 :大豆科学 | 被引量 : 0次 | 上传用户:pzchh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
田间观察比较了7个中熟大豆品种(系)花、荚形成过程及其时空分布和产量的差异。结果表明:在高密度(32.8万~35.0万株.hm-2)条件下,品种(系)间产量的差异主要是由于单位面积成花数、腔/花比值和荚腔数的差异导致;中熟超高产大豆品种(系)黑农61、10-46、11-109获得5 802.0~5 954.6 kg.hm-2产量的成花数为1 893.8×104~3 027.6×104个.hm-2,腔/花比值为0.87~1.33,腔数为2 511.2×104~2 646.6×104个.hm-2,结实率为85.5%~90.5%,粒数为2 256.6×104~2 275.0×104个.hm-2;均表现出中、下部节的花数分布较多,中、上部节的荚腔数分布较多,单株花期为21~27 d,开花高峰期在6月9日;荚期为24 d,结荚高峰期在6月19~27日,在结荚高峰期单株同时有6~10个节成荚,单株花荚期35 d。在高密度条件下,控制中部节间长度,增加植株中、上部节的成花数、提高腔/花比值,保证单位面积荚腔数是实现中熟大豆品种超高产的技术关键。 The field observation compared the flower and pod formation of seven medium maturing soybean varieties (lines) with their spatiotemporal distribution and yield differences. The results showed that the difference of yield between lines was mainly caused by the difference of flower number, cavity / flower ratio and pod number per unit area under the condition of high density (328,000-350,000 hm-2) The yield of mid-ripe super-high-yielding soybean varieties (lines) Heinong 61,10-46,11-109 obtained 5 802.0 ~ 5 954.6 kg.hm-2 was 1 893.8 × 104 ~ 3 027.6 × 104.hm- 2, the ratio of cavity / flower was 0.87-1.33, the number of cavity was 2 511.2 × 104-2 646.6 × 104.hm-2, the seed setting rate was 85.5% -90.5%, the number of grains was 2 256.6 × 104-2 275.0 × 104 Hm-2. All of them showed that there were more flower numbers in the middle and lower nodes, and the number of pods in the middle and upper nodes were more distributed. The flowering period per plant was 21-27 days and the flowering peak was on June 9. The podding period was 24 days. The peak of the pod peak was between June 19 and June 27, and there were 6 to 10 nodes in the pod peak at the same time. The pods reached 35 days per plant. Under the conditions of high density, controlling the length of internodes in the middle, increasing the number of flowers in the middle and upper nodes, increasing the ratio of cavity / flower, and ensuring the number of pods per unit area are the key techniques to realize the super high yield of medium maturing soybean varieties.
其他文献
支持向量机(SVM)以及由此衍生的C-SVM,ν-SVM及基于核函数的学习是机器学习中基本的,应用最广泛的理论和方法。对于包含不确定信息的应用场合,例如在自然语言处理,推荐系统,
作为一种非参数统计方法,经验似然自Owen(1988)年提出以来已经得到越来越多的关注。它已经广泛用于构造兴趣参数和光滑函数的置信区域。许多文献表明相比于正态逼近方法,经验似
本文主要用加速增广部分牛顿法(AAPNM)来计算非线性偏微分方程多解.非线性偏微分方程解的多重性,不稳定性,均给计算方法的设计与理论研究带来了很多的困难。如何设计一种稳定的
在低维拓扑学中,对于三维流形的探究是最主流的,其分类问题更是其中的一个基础性的方向。在众多的三维流形分析手法中,本文主要采纳的是其中的组合方案,即通过站在三维流形的融合