在纽约学摄影

来源 :影像视觉 | 被引量 : 0次 | 上传用户:virusniper
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
《影像视觉》前实习编辑刘张铂泷本科毕业后进入纽约视觉艺术学院,在这所“纽约有超过一半的艺术家和设计师都是从这里毕业的,,艺术名校读摄影,他和我们分享了自己的感受。Q你是从什么时候开始接触摄影的?什么时候,为什么想到要学摄影?A高一寒假去广州,亲戚送了一台索尼卡片机,然后开始拍照片。我的大学第一志愿选的是建筑系,结果没有考上就去了材料系,基本上学的是物理和化学,我又很不喜欢,一直有转系的想法。原来考虑毕业先申请材料专业出国,再找机会转去自己喜欢的专业。后来觉得既然不喜欢材料,还不如直接去学自己 ”Vision Visual“ Former Intern Editor Liu Chang-platinum After graduating Takaki Takahiro entered the New York Institute of Visual Art where ”more than half of New York City artists and designers are graduating from this art school reading photography, he and we Share your feelings Q When did you come into contact with photography? When did you think of studying photography? A high school holiday to Guangzhou, relatives sent a Sony card machine, and then began to take pictures of my university The first choice is the Department of Architecture Volunteers, the results did not go to the Department of Materials Department, basically learning physics and chemistry, I very much do not like, has been the idea of ​​a transfer system. Originally consider the graduation application materials professional abroad, and then Find opportunities to go to your favorite professional. Later, I feel that since I do not like materials, might as well go directly to learn their own
其他文献
  We introduce some singular integral operators (extension and restriction operators) on the upper half space,and prove the sharp inequality.This inequality c
会议
  In this work,we obtain the interior regularity of weak solutions for a class of quasilinear elliptic equations,including the $p$-Laplace equation.
会议
  The model of the Cauchy problem considered is the followingegin{equation}label{1.1}left{egin{array}{1}u_t=Delta u+e^u,;;xin R^N,; t>0,u|_{t=0}=phi in mathca
会议
关于加强与银行贷款业务相关的房地产抵押和评估管理工作的通知建设部,中国人民银行建房[1995]152号1995年3月23日印发各省、自治区建委(建设厅),直辖市房地产管理局;中国人民银行各省、自治区、直
居民投资:老区经济增长的新起点文/度国柱,段家喜吉安是地处赣中南的革命老区,交通闭塞、社会发展水平较低。京九铁路的贯通给其经济的发展注入强大的动力和活力,为其再造辉煌提供
一个人在逆境中,只要找准了自己的人生座标,那么其奋斗结果同样是辉煌的——作者题记。 “世界上没有攀不过的高峰。这是欧阳本善信奉的一句格言。 A person in adversity,
  We establish the limit system for the Gross-Pitaevskii equations (Bose-Einstein condensates) when the segregation phenomenon appears,and shows this limit is
会议
党的十九大提出了全面建成覆盖城乡居民的社会保障体系的目标,解决好人民最关心最直接最现实的利益问题.加强社会保险基金监督管理,确保基金安全完整,是社会保障体系正常运行
期刊
  I will review the notion of Poincare Einstein structure,formulate a compactness result which can be viewed as apriori estimates of solutions of this equatio
会议
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊