论文部分内容阅读
本文首先分析线性Schr(o)dinger方程一种高阶差分格式的构造方法,得到方程的耗散项.在此基础上对三次非线性Schr(o)dinger方程,提出了一种精度为o(τ2+h2)的差分格式,证明了该格式保持了连续方程的两个守恒量,且是收敛的与稳定的.并通过数值例子与已有隐格式进行了比较,结果表明,本文格式在计算量类似的情况下,提高了数值精度.