论文部分内容阅读
建立径向基函数(RBF)神经网络轮胎滚动阻力模型,充分利用RBF神经网络模型逼近精度高、训练速度快、无局部极小等优点,对轮胎滚动阻力进行全面、准确的预测。结果表明,轮胎滚动阻力RBF与反向传播算法(BP)神经网络模型预测值的平均相对误差分别为2%和6%左右,RBF神经网络模型在训练和预测结果上均有更大优势,能够有效预测轮胎滚动阻力。