论文部分内容阅读
模型补偿技术已成功应用到噪声环境下的语音识别任务中。流行的模型补偿技术如Log-Add和Log-Normal PMC(并行模型合并)方法对动态特征参数通常只能给出近似的补偿。因此他们的识别率在较低的信噪比条件下变得很低。本文利用静态特征的导函数推导出了一种新的动态模型参数补偿方法。新的方法可以同任何已知的静态模型补偿算法结合产生出新的用于识别的噪声语音模型。实验证明这一新算法的应用,使其识别率比仅使用原有的模型补偿算法有较为明显的提高,并且新算法的复杂度较原有的模型补偿算法只有轻微的增加。