论文部分内容阅读
【摘 要】 随着基坑开挖的深度和面积的不断增加,一定程度上给深基坑工程的防渗止水技术提出了更高的要求。本文结合高压旋喷桩施工实例,对高压旋喷桩的施工技术进行了介绍,阐述了高压旋喷桩施工后出现的问题及处理措施,对深基坑开挖止水施工提供实例性参考。
【关键词】 高压旋喷桩;施工技术;防渗;止水;处理
随着建筑行业和建筑施工技术的发展,基坑工程开挖的深度和面积也不断增加,这给基坑工程的施工技术带来了更高的要求,特别是在基坑防渗止水的要求更为严格,因此,越来越多的新技术得以应用。而高压旋喷桩是利用高压把浆液从喷嘴喷射出来,冲击破坏土层,浆液和土充分搅拌混合,形成一个由圆盘状混合物连续堆积的柱体,通过旋喷桩和护坡桩之间相互搭接,形成一道连续的止水帷幕,来隔断地下水进入施工区域,保证基础施工的顺利进行。为更好的应用该技术,下面,就结合工程实例,对高压旋喷桩的施工技术进行探讨。
1 工程概况
某建筑工程,主建筑基坑开挖深度12.54m。副建筑基坑开挖深度11.32m,裙楼基坑开挖深度9.45m。基坑总开挖周长约458m,开挖面积约12472.2㎡。
2 地质条件
场地自上而下依次划分为:①人工填土层(Qml)本层以素填土为主,灰色、灰褐色、灰黄色等为主,主要由组成物为人工堆填粘性土以及砂粒等,欠压实~稍压实,堆填砂结构较松散。②种植土层(Qpd)灰褐色、黄色等为主,主要组成物为粘性土、粉细砂及植物根系。③第四系冲积层(Qal)该层按土质。④第四系残积层(Qel)本层分布不广泛,为燕山三期(rs2(3))花岗岩风化残积而成,主要为砂质粘性土、砾质粘性土,浅黄间紫灰白色,黄褐色、灰褐色,湿,硬塑状为主,局部可塑状,由粘粒、粉粒组成,含5~25%的石英质砂砾,大小多为2~3mm。
3 施工方案
3.1 方案设计
设计采用1.3m/1.4m间距灌注桩结合φ600mm单管高压旋喷桩止水,理论上会在每个灌注桩之间形成渗漏通道。应采用喷射半径较大的双管或三管高压注浆方式。考虑到淤泥质粉质黏土层,双管高喷注浆方式应作为首选。
由于设计钻孔灌注桩与旋喷桩桩顶高程均在地下4.0~5.0m,旋喷桩施工时施工面仍不具备开挖条件,导致旋喷桩施工必须完全依靠坐标定位于灌注桩之间,极易出现偏差。通过开挖后的检查,灌注桩与旋喷桩桩位均有不同程度的偏差出现,增加了止水盲区的出现。旋喷桩施工应在开挖到灌注桩桩头位置后进行,既保证了钻孔位置的准确,减小了遇到地下障碍物的情况,也使钻孔垂直度更加有保障,后期增补的三管高压摆喷墙便是如此。
3.2 优化方案
虽然目前基坑防渗已达到预期目的,但由于重复施工增加了施工费用。结合原设计及后期处理方案,并考虑到工程造价等因素,总结出另一止水帷幕设计方案:高压喷射注浆方式采用双管摆喷,形成最小400mm厚的防渗墙。具体布置如图1所示。
3.3 支护方案
采用复合式支护结构,其中,在标高-6.0m以上采用土钉墙作为支护结构,在标高-6.0m以下采用钻孔灌注桩(桩间加单管高压旋喷桩)预应力锚杆(锚)作为支护结构。钻孔灌注桩间距1.3m/1.4m,高压旋喷桩设计桩径60cm。灌注桩轴心向基坑外偏移15cm,作为高压旋喷桩轴心。
4 施工难点
尽管在施工前期做了大量的准备工作,全程采用全站仪跟踪测量放样,但仍遇到以下施工难题。
1)地下障碍物较多
在施工过程中发现地下有较大的片石和早期建筑的混凝土梁,给钻孔造成很大困难。当障碍物较浅时,采用先开挖回填后再施工的办法;当障碍物较深时,采用金刚石钻头穿过障碍物,在喷浆时在障碍物附近复喷两次,尽量保证其周围土体防渗能力,如图3所示。
2)混凝土灌注桩“大肚子”现象严重
由于混凝土灌注桩施工工程中同样存在受地下障碍物影响的问题,钻孔完成后很容易在障碍物附近形成一定体积的塌孔,以致在混凝土灌注过程中造成超方而形成混凝土大肚子。由于大肚子混凝土一般都体积较大且有一定深度,当出现大肚子混凝土在旋喷桩桩位时,不可简单采用穿过的办法施工。一般采用将旋喷桩桩位向基坑外侧偏移,并增补1根旋喷桩的方法施工(见图2)。从而避开“大肚子”混凝土,可以保证旋喷桩的止水效果。
5 单管高压旋喷桩施工
5.1 施工试验
为保证施工质量,合理选定施工参数。正式开工前,根据不同的施工参数做3根试验桩,喷至地面,待终凝3d后外开观察桩体质量。具体施工参数如表1所示。
5.2 施工参数
根据桩体质量,最终选定如下施工参数:①旋喷压力27~29MPa;②浆液密度1.42kg/L(换算水灰比1.25∶1);③提升速度19cm/min。
5.3 施工工艺
旋喷桩施工采用钻喷分离施工工艺,采用地质钻机钻孔,高喷台车连续喷浆。施工流程:孔位布置→钻孔→制浆→喷射作业→空孔回灌。
6 灌后检查存在的问题及处理
6.1 检查情况
开挖前根据抽水试验,坑内井平均降深约4m,测得整个基坑(开挖周长560m)渗漏达500m3/h。
6.2 渗水原因
由于设计灌注桩间距多为40cm,旋喷桩与灌注桩理论搭接只有8~9cm,且基岩普遍深达21~22m,即使不考虑受鉆孔灌注桩垂直度以及地下障碍物等多方面因素影响,高喷钻孔按照规范1%严格控制垂直度,仍在8~9m以下就会出现封堵缺口,造成每个灌注桩间均有渗漏通道。
6.3 处理方法
由于基坑开挖较深,最深处接近挖到基岩,现只是降4m左右水深,渗水达到500m3/h。且周边环境基本不允许坑外降水。如不进一步采取防渗措施,基坑无法开挖。为了使基坑顺利开挖,建议在冠梁外侧5cm、两钻孔灌注桩中间增设1个三管高压摆喷浆孔,进行三管高压摆喷灌浆并与两侧钻孔灌注桩相接,底部插入基岩50cm,上部到18.6m高程(冠梁底部),形成一道厚度不小于20cm的高喷防渗墙,如图2所示。
施工中将所有灌注桩均用反铲挖出1m左右,准确找出灌注桩实际桩间中点,放出高喷孔孔位,施工中严格按照施工参数进行三管摆喷灌浆施工。
6.4 处理效果
整个基坑大面开挖深13.2~15.5m,最深处达21m(挖到基岩),整个开挖暴露面地下水位以下无一处渗水,整个基坑开挖结束,坑内最多只起用5~6台80m3/h深井泵断续抽水,开创了南昌地区深基坑不用坑外降水的先例。
7 结语
实践证明,高压旋喷桩是一种经济有效的防渗止水技术,切实保证了基坑施工进度和质量。通过本工程的成功应用,在一定程度上拓展了高压旋喷桩的应用前景,为今后类似工程的施工有一定的借鉴作用。
参考文献
[1] 鄢秉红.高压旋喷桩止水技术在深基坑开挖中的应用[J].福建建筑,2009年第04期
[2] 高俊峰.高压旋喷桩在城市深基坑防渗止水中的应用[J].山西建筑,2005年11期
【关键词】 高压旋喷桩;施工技术;防渗;止水;处理
随着建筑行业和建筑施工技术的发展,基坑工程开挖的深度和面积也不断增加,这给基坑工程的施工技术带来了更高的要求,特别是在基坑防渗止水的要求更为严格,因此,越来越多的新技术得以应用。而高压旋喷桩是利用高压把浆液从喷嘴喷射出来,冲击破坏土层,浆液和土充分搅拌混合,形成一个由圆盘状混合物连续堆积的柱体,通过旋喷桩和护坡桩之间相互搭接,形成一道连续的止水帷幕,来隔断地下水进入施工区域,保证基础施工的顺利进行。为更好的应用该技术,下面,就结合工程实例,对高压旋喷桩的施工技术进行探讨。
1 工程概况
某建筑工程,主建筑基坑开挖深度12.54m。副建筑基坑开挖深度11.32m,裙楼基坑开挖深度9.45m。基坑总开挖周长约458m,开挖面积约12472.2㎡。
2 地质条件
场地自上而下依次划分为:①人工填土层(Qml)本层以素填土为主,灰色、灰褐色、灰黄色等为主,主要由组成物为人工堆填粘性土以及砂粒等,欠压实~稍压实,堆填砂结构较松散。②种植土层(Qpd)灰褐色、黄色等为主,主要组成物为粘性土、粉细砂及植物根系。③第四系冲积层(Qal)该层按土质。④第四系残积层(Qel)本层分布不广泛,为燕山三期(rs2(3))花岗岩风化残积而成,主要为砂质粘性土、砾质粘性土,浅黄间紫灰白色,黄褐色、灰褐色,湿,硬塑状为主,局部可塑状,由粘粒、粉粒组成,含5~25%的石英质砂砾,大小多为2~3mm。
3 施工方案
3.1 方案设计
设计采用1.3m/1.4m间距灌注桩结合φ600mm单管高压旋喷桩止水,理论上会在每个灌注桩之间形成渗漏通道。应采用喷射半径较大的双管或三管高压注浆方式。考虑到淤泥质粉质黏土层,双管高喷注浆方式应作为首选。
由于设计钻孔灌注桩与旋喷桩桩顶高程均在地下4.0~5.0m,旋喷桩施工时施工面仍不具备开挖条件,导致旋喷桩施工必须完全依靠坐标定位于灌注桩之间,极易出现偏差。通过开挖后的检查,灌注桩与旋喷桩桩位均有不同程度的偏差出现,增加了止水盲区的出现。旋喷桩施工应在开挖到灌注桩桩头位置后进行,既保证了钻孔位置的准确,减小了遇到地下障碍物的情况,也使钻孔垂直度更加有保障,后期增补的三管高压摆喷墙便是如此。
3.2 优化方案
虽然目前基坑防渗已达到预期目的,但由于重复施工增加了施工费用。结合原设计及后期处理方案,并考虑到工程造价等因素,总结出另一止水帷幕设计方案:高压喷射注浆方式采用双管摆喷,形成最小400mm厚的防渗墙。具体布置如图1所示。
3.3 支护方案
采用复合式支护结构,其中,在标高-6.0m以上采用土钉墙作为支护结构,在标高-6.0m以下采用钻孔灌注桩(桩间加单管高压旋喷桩)预应力锚杆(锚)作为支护结构。钻孔灌注桩间距1.3m/1.4m,高压旋喷桩设计桩径60cm。灌注桩轴心向基坑外偏移15cm,作为高压旋喷桩轴心。
4 施工难点
尽管在施工前期做了大量的准备工作,全程采用全站仪跟踪测量放样,但仍遇到以下施工难题。
1)地下障碍物较多
在施工过程中发现地下有较大的片石和早期建筑的混凝土梁,给钻孔造成很大困难。当障碍物较浅时,采用先开挖回填后再施工的办法;当障碍物较深时,采用金刚石钻头穿过障碍物,在喷浆时在障碍物附近复喷两次,尽量保证其周围土体防渗能力,如图3所示。
2)混凝土灌注桩“大肚子”现象严重
由于混凝土灌注桩施工工程中同样存在受地下障碍物影响的问题,钻孔完成后很容易在障碍物附近形成一定体积的塌孔,以致在混凝土灌注过程中造成超方而形成混凝土大肚子。由于大肚子混凝土一般都体积较大且有一定深度,当出现大肚子混凝土在旋喷桩桩位时,不可简单采用穿过的办法施工。一般采用将旋喷桩桩位向基坑外侧偏移,并增补1根旋喷桩的方法施工(见图2)。从而避开“大肚子”混凝土,可以保证旋喷桩的止水效果。
5 单管高压旋喷桩施工
5.1 施工试验
为保证施工质量,合理选定施工参数。正式开工前,根据不同的施工参数做3根试验桩,喷至地面,待终凝3d后外开观察桩体质量。具体施工参数如表1所示。
5.2 施工参数
根据桩体质量,最终选定如下施工参数:①旋喷压力27~29MPa;②浆液密度1.42kg/L(换算水灰比1.25∶1);③提升速度19cm/min。
5.3 施工工艺
旋喷桩施工采用钻喷分离施工工艺,采用地质钻机钻孔,高喷台车连续喷浆。施工流程:孔位布置→钻孔→制浆→喷射作业→空孔回灌。
6 灌后检查存在的问题及处理
6.1 检查情况
开挖前根据抽水试验,坑内井平均降深约4m,测得整个基坑(开挖周长560m)渗漏达500m3/h。
6.2 渗水原因
由于设计灌注桩间距多为40cm,旋喷桩与灌注桩理论搭接只有8~9cm,且基岩普遍深达21~22m,即使不考虑受鉆孔灌注桩垂直度以及地下障碍物等多方面因素影响,高喷钻孔按照规范1%严格控制垂直度,仍在8~9m以下就会出现封堵缺口,造成每个灌注桩间均有渗漏通道。
6.3 处理方法
由于基坑开挖较深,最深处接近挖到基岩,现只是降4m左右水深,渗水达到500m3/h。且周边环境基本不允许坑外降水。如不进一步采取防渗措施,基坑无法开挖。为了使基坑顺利开挖,建议在冠梁外侧5cm、两钻孔灌注桩中间增设1个三管高压摆喷浆孔,进行三管高压摆喷灌浆并与两侧钻孔灌注桩相接,底部插入基岩50cm,上部到18.6m高程(冠梁底部),形成一道厚度不小于20cm的高喷防渗墙,如图2所示。
施工中将所有灌注桩均用反铲挖出1m左右,准确找出灌注桩实际桩间中点,放出高喷孔孔位,施工中严格按照施工参数进行三管摆喷灌浆施工。
6.4 处理效果
整个基坑大面开挖深13.2~15.5m,最深处达21m(挖到基岩),整个开挖暴露面地下水位以下无一处渗水,整个基坑开挖结束,坑内最多只起用5~6台80m3/h深井泵断续抽水,开创了南昌地区深基坑不用坑外降水的先例。
7 结语
实践证明,高压旋喷桩是一种经济有效的防渗止水技术,切实保证了基坑施工进度和质量。通过本工程的成功应用,在一定程度上拓展了高压旋喷桩的应用前景,为今后类似工程的施工有一定的借鉴作用。
参考文献
[1] 鄢秉红.高压旋喷桩止水技术在深基坑开挖中的应用[J].福建建筑,2009年第04期
[2] 高俊峰.高压旋喷桩在城市深基坑防渗止水中的应用[J].山西建筑,2005年11期