论文部分内容阅读
The goal of this paper is to analyze the Finnish gross domestic product(GDP) and to find chaos in the Finnish GDP. We chose Finland where data has been available since 1975, because we needed the longest time series possible. At first we estimated the time delay and the embedding dimension, which is needed for the Lyapunov exponent estimation and for the phase space reconstruction.Subsequently, we computed the largest Lyapunov exponent, which is one of the important indicators of chaos. Then we calculated the 0-1 test for chaos. Finally we computed the Hurst exponent by rescaled range analysis and by dispersional analysis. The Hurst exponent is a numerical estimate of the predictability of a time series. In the end, we executed a recurrent analysis and displayed recurrence plots of detrended GDP time series. The results indicated that chaotic behaviors obviously exist in GDP.
The goal of this paper is to analyze the Finnish gross domestic product (GDP) and to find chaos in the Finnish GDP. We selected Finland where data has been available since 1975, because we needed the longest time series possible. At first we estimated the time delay and the embedding dimension, which is needed for the Lyapunov exponent estimation and for the phase space reconstruction. Published, we computed the largest Lyapunov exponent, which is one of the important indicators of chaos. Then we calculated the 0-1 test for chaos. Finally we computed the Hurst exponent by rescaled range analysis and by dispersional analysis. The Hurst exponent is a numerical estimate of the predictability of a time series. In the end, we executed a recurrent analysis and expressed recurrence plots of detrended GDP time series The results indicated that chaotic behaviors obviously exist in GDP.