论文部分内容阅读
A special nanobubble generation system has been developed for evaluating the effect of nanobubble on froth flotation. In this study, an eight-factor five-level Central Composite Experimental Design was conducted for investigating eight important parameters governing the median size and the volume of nanobubbles. These process parameters included surfactant concentration, dissolved oxygen (O2) content, dissolved carbon dioxide gas (CO2) content, pressure drop in cavitation tube nozzle, <50 nm hydrophobic particle concentration, <50 nm hydrophilic particle concentration, slurry temperature and the time interval after nanobubble generation. The properties, stability and uniformity of nanobubbles were investigated. The study of the produced nanobubble’s effects on the characteristics of microbubble solutions and millimeter scale bubble solutions was performed in a 50.8 mm column.
A special nanobubble generation system has been developed for evaluating the effect of nanobubble on froth flotation. In this study, an eight-factor five-level Central Composite Experimental Design was conducted for investigating eight important parameters governing the median size and the volume of nanobubbles. <50 nm hydrophobic particle concentration, <50 nm hydrophilic particle concentration, slurry temperature and the time interval <50 nm hydrophobic particle concentration, <50 nm hydrophobic particle concentration, after nanobubble generation. The properties, stability and uniformity of nanobubbles were investigated. The study of the produced nanobubble’s effects on the characteristics of microbubble solutions and millimeter scale bubble solutions was performed in a 50.8 mm column.