论文部分内容阅读
An in-plane load measuring technique is developed to perform the strength test of the micro-cantilever. Based on electromagnetism theorem, Micro UTM (Universal Testing Machine) was in-house made with the load range ±1 N and the displacement range ±300 μm. It applies an in-plane load on the free-end of the micro-cantilever. The load acts as a bending moment for the root of the cantilever, but as a torque for the anchor. The results show that for samples with different sizes the ultimate loads range from 1.3 to 69.8 mN and the calculated torque is ap-proximately proportional to the square of the bonding length. Two failure modes, fracture at the root of the cantilever and fracture at the anchor, are observed by micro examination to the debris, which indicates that there is a critical design to achieve the strength bal-ance between the cantilever and the anchor. The work demonstrates that Micro UTM is a powerful in-strument for the strength test of the micro-cantilever and similar micro-structures.
Based on electromagnetism theorem, Micro UTM (Universal Testing Machine) was in-house made with the load range ± 1 N and the displacement range ± 300 μm. It applies an in-plane load on the free-end of the micro-cantilever. The load acts as a bending moment for the root of the cantilever, but as a torque for the anchor. The results show that for samples with different sizes the ultimate loads range from 1.3 to 69.8 mN and the calculated torque is ap-proximately proportional to the square of the bonding length. Two failure modes, fracture at the root of the cantilever and fracture at the anchor, are observed by micro examination to the debris, which indicates that there is a critical design to achieve the strength bal-ance between the cantilever and the anchor. The work demonstrates that Micro UTM is a powerful in-strument for the strength test of the micro-cantilever and similar micr o-structures.