论文部分内容阅读
自然环境中的鱼类形状种类繁多且易受到不同光线和背景环境影响,导致一些传统的基于颜色纹理或特征点提取的鱼类识别算法识别精度降低,达不到良好的分类效果。针对这一问题,文中在已有的AlexNet卷积神经网络的基础上,减少了部分冗余卷积层以加快模型训练速度。将基于项的柔性注意力算法应用于改进后的AlexNet卷积神经网络模型,该模型由4个卷积层、1个基于项的柔性注意力层和两个全连接层组成。同时,利用迁移学习的方法建立鱼类识别模型。测试结果表明,相较于原始AlexNet,提出的算法平均识别准确率为97.43%