论文部分内容阅读
活体细胞有丝分裂过程的发生具有时间和空间上的随机性,自动识别并准确定位活体细胞的有丝分裂对科研人员而言充满挑战。提出一种基于深度学习的自动识别并定位活体细胞有丝分裂的检测方法。通过改进YOLOv3主干网络并引入注意力机制,构建名为DetectNet的深度神经网络。在明场显微成像条件下,获取多尺寸活体细胞图像并构建数据集对网络进行训练,并对DetectNet与多个目标检测算法进行对比,验证其有效性。实验结果表明,针对活体细胞的明场显微图像,DetectNet能够高效地从不同尺寸大视场图像中直接识别并定