论文部分内容阅读
We explore a simple and eco-friendly approach for preparing CZTS powders and a screen-printing process for Cu2ZnSn(S,Se)4 (CZTSSe) counter electrodes (CEs) in dye-sensitized solar cells (DSCs). Cu2ZnSnS4 (CZTS) nanoparticles have been synthesized via a hydrazine-free solvothermal approach without the assistance of organic ligands. CZTS has been prepared by directly drop-casting the CZTS ink on the cleaned FTO glass, while CZTSSe CEs have been fabricated by screen-printing CZTS pastes, followed by post selenization using Se vapor obtained from elemental Se pellets. The crystal structure, composition and morphology of the as-deposited CZTS nanoparticles and CZTSSe electrodes are characterized by X-ray diffractometer, energy dispersive spectrometer, field emission scanning electron microscopy and transmission electron microscopy. The electrochemical properties of CZTS, CZTSSe and Pt CE based DSCs are examined and analyzed by electrochemical impedance spectroscopy. The prepared CZTS and CZTSSe CEs exhibit a cellular structure with high porosity. DSCs fabricated with CZTSSe CEs achieve a power conversion e?ciency of 5.75% under AM 1.5 G illumination with an intensity of 100 mW/cm2, which is higher than that (3.22%) of the cell using the CZTS CE. The results demonstrate that the CZTSSe CE possesses good electrocatalytic activity for the reduction of charge carriers in electrolyte. The comprehensive CZTSSe CE process is cheap and scalable. It can make large-scale electro-catalytic film fabrication cost competitive for both energy harvesting and storage applications.