论文部分内容阅读
K均值算法是聚类分析中使用最为广泛的算法之一。针对文本聚类所面临的维数灾难,稀疏向量以及标准K均值算法初始中心点选择的随机性等问题,提出了一种面向文本聚类的改进的K均值算法,通过运用特征选择及降维、稀疏向量筛除、基于密度及散布的初始中心点搜索等方法进行改进。实验结果表明,改进后的算法无论在聚类精度还是在稳定性等方面,都明显优于标准的K均值算法。